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When orthogonal, plane sound waves of the same frequency, wavelength and 
amplitude, but with phase difference in, are incident upon a circular cylinder there 
is a time-independent streaming about the cylinder which is in the form of a potential 
vortex separated from the cylinder by a thin, viscous Stokes layer. As the amplitude 
of the waves in one of the beams decreases, an additional viscous boundary layer is 
involved until, when the amplitude is sufficiently small, this flow structure is 
destroyed as fluid erupts from the boundary layer. In the limit of a single beam it is 
known that this eruption results in opposing jets perpendicular to the wavefronts of 
the oncoming wave. 

1. Introduction 
In this paper we consider the acoustic, or steady, streaming about a circular 

cylinder when plane sound waves are incident upon it from orthogonal directions. 
The frequency is the same for the waves in each beam as is the wavelength, assumed 
large when compared with the cylinder radius. The phase of the waves differs by $r, 
and the amplitude by a factor of A. The ensuing motion is the same, when the 
reference frame is chosen appropriately, as if the cylinder performed an orbital 
motion in a fluid otherwise at  rest. That is, the centre of the cylinder moves along an 
elliptical path, with A the axis ratio, but its orientation remains fixed. 

We assume that the velocity amplitude of fluid particles in the basic oscillatory 
motion is small compared with the cylinder radius. With this assumption the 
Reynolds stresses, which are responsible for the streaming motion, act within a thin 
Stokes layer adjacent to the boundary. This motion persists at the edge of the Stokes 
layer to drive a steady streaming flow outside it. The vorticity transport equation in 
the outer region involves a balance between diffusion of vorticity and convection by 
the Lagrangian mean velocity. A streaming Reynolds number, first identified by 
Stuart (1963) in the context of oscillatory flow problems, characterizes this outer 
flow. We discuss the outer flow in the limit of large streaming Reynolds number, in 
which case it assumes the form of a viscous boundary layer within a potential vortex 
flow. The circulation associated with the potential vortex is determined either 
analytically or numerically for a range of values of A. There is a lower value of A,  A,, 
below which this model of the flow is no longer valid. Whereas for h > A, fluid 
particles progress in closed loops around the cylinder, for A 6 A, there is an eruption 
of fluid from the outer boundary layer to form jet-like structures that are often 
associated with these oscillatory motions. 

The study is set within the context of earlier work. In particular we note that for 
A = 1, Riley (1971) has shown that the outer boundary layer is not present and the 
Stokes-layer solution matches directly with the potential vortex solution. Whilst for 
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A = 0 the symmetry of the flow implies that the circulation in the potential vortex 
must vanish. In  that case diametrically opposed jets emerge from the outer boundary 
layer as predicted by Stuart (1966), and visualized by Davidson & Riley (1972). A 
particular feature of the flow under discussion is that, for h > A,, although the 
cylinder experiences no net force, it does experience a torque which varies linearly 
with A. 

In 92 we pose the problem, whilst $3 is devoted to  the solution procedure. The 
results are presented and discussed in 94. 

2. Governing equations 
As outlined in 9 1, we consider the flow induced about a circular cylinder, radius a ,  

placed in orthogonal beams of plane sound waves. The waves in each beam have the 
same frequency, w ,  and wavenumber, k, but differ in phase by in. The velocity 
amplitude of the waves incident from the direction B = 0, see figure 1, is U,, whilst 
that of the waves incident from B = is AU,, 0 < A < 1. We assume that the 
wavelength of the oncoming waves is large compared with the cylinder radius, so 
that ka 4 1.  

With a,  Uo and w-l as, respectively, a typical length, velocity and time with which 
to make our flow quantities dimensionless, the non-dimensional stream function $ 

with the velocity components given by v, = r-l a@/aB,  v g  = -a$/&. We see from (1) 
that our flows are characterized by the two dimensionless parameters, E = Uo/wa and 
Rs = q / w v  = eUOa/v.  We shall assume throughout that E < 1, and develop our 
solution accordingly, whilst R, = O( 1). We note that R, is a Reynolds number based 
upon the velocity do, and we shall see that it plays such a role in association with 
the acoustic, or steady, streaming, as first anticipated by Stuart (1963). The 
boundary conditions which must be satisfied by are the no-slip condition 

P a )  

(2 b )  

$ = - = O  a$ a t  r = l ,  
ar 

together with 31’ - -ir{(A-l)cosB+eie}eit as r + w ,  
where here, and throughout, the real part of any complex quantity is to be 
understood. 

3. Solution procedure 

example, we expand the stream function as 

where, in anticipation of the steady streaming a t  O ( s ) ,  we have decomposed $l into 
a time-independent part, denoted by superscript ‘s ’, and a time-dependent part 
denoted by superscript ‘ u ’. 

If we substitute (3) into (l) ,  then at leading order we have V2$o = 0 the solution 
of which, subject to ( 2 b )  and the first of (2a ) ,  is 

With E 4 1 we develop a solution for all flow variables in powers of E .  Thus, for 

31‘@, 8, t )  = 31’0 ( r ,  0, t )  + 431’?) ( r ,  0 )  + @:u’ ( r ,  6 ,  t ) )  + O(E2), (3) 
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FIGURE 1. Definition sketch. 

This solution is deficient, insofar as it does not satisfy the no-slip condition a t  
r = 1, where 

is the predicted velocity of slip. 
The slip velocity is accommodated within the classical Stokes shear-wave layer. At 

this point we choose, in conformity with earlier work (Riley 1965,1975), to  introduce 
the variables x = in - 8, y = r - 1, as in figure 1. The Stokes-layer variables (see, for 
example, Riley 1967), are 

vg = 2i{ ( A  - 1 ) cos B + eie} eit , (5 1 

in terms of which, equation (1) becomes, retaining terms up to and including O ( s ) ,  

In terms of these variables the velocity components are given by 12 = a$/ar] ( = -we), 
v" = -a$/ax. As in the outer region we expand the flow variables in powers of B so 
that, for example, 

J(x, 7, t )  = J o  (277, t )  + E { J f )  (2, 3)+  J?) @,7, t ) )  + W2). (8) 
At leading order, the solution which satisfies the no-slip condition a t  7 = 0, and 
matches with the slip velocity ( 5 ) ,  is 

(9) 
$,, = U ( X ) [ ~ - ~ ( I  -i){l -e-(l+i)~}] eit,\ 

where ~ ( x )  = -2i{(~-1)sinx+ie-iz). J 
If now, in (7) with 6 a s i n  (8), we consider the terms O ( E ) ,  and take a time average 
denoted by ( . ) then since (@) = 0 we have 
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FIGURE 2. The variation of the slip velocity us, equation (13), for various values 
Pu'ote that us (z + n) = us. 

of A. 

The appropriate solution of (10) that satisfies the no-slip condition at 7 = 0, with 121") 
bounded as 7 + 00, gives 

where U ( z )  is as in (9), and an asterisk denotes the complex conjugate. From (11) the 
shear stress contribution a t  the cylinder surface is given by 

From expression (12), we may deduce that there is no net force on the cylinder, but 
that it experiences a clockwise torque which varies linearly with A. 

To complete the solution to O(s) we must return to the outer solution. First, 
however, note that from (11) the limit process 7+00 predicts a steady streaming 
velocity at the edge of the Stokes layer as 

3 dU 
8 dx 

us = .iif) = -- { (1 - i) U* - + (1 + i) U- 

= ij(1-A2)sin2x+3h. (13) 

This velocity 'drives' the steady streaming outside the Stokes layer; it is shown for 
various values of h in figure 2, where we note u,(x+x) = us (x), and agrees in the two 
limiting cases h = 0, 1 with earlier work, Riley (1971), Davidson & Riley (1972). 

To derive an equation for the steady streaming at O(s)  outside the Stokes layer is 
not an entirely straightforward matter. For uni-directional fluctuations, cor- 



Acoustic streaming about a cylinder in orthogonal beams 39 1 

responding to A = 0, Riley (1967) has shown, by considering terms up to 0 ( e 3 )  in (l), 
that the steady streaming satisfies the full Navier-Stokes equations for steady flow 
with R, as Reynolds number. Using similar techniques, Riley (1992) has generalized 
this to obtain, for the steady streaming, the equation 

( 1 / R , ) V 2 g : S ) - ( ~ ~ ) - V ) ~ : S )  = 0. (14) 
In (14), 51") is the vorticity such that V A v?) = (0, 0, -V2 @.I")) = (0, 0, [f)) and 
v t )  = up) + vd where 

vd = (([vOdtmV)vO), (15) 

is the Stokes drift velocity. Equation (14) shows a balance between diffusion and 
convection of the time-independent vorticity @), but with the Lagrangian mean 
velocity tf) providing the convective effect. This result is not unexpected since the 
secondary velocity (15) is present even in an inviscid fluid; see also Lighthill (1956). 
Equation (14) has to be solved subject to up) = us on y = 0, with u, as in (13), and 
the steady streaming effect decaying to zero at large distances from the cylinder. 
Lighthill (1978) has remarked that all worthwhile, i.e. concentrated, streaming 
motions take place with& B 1, and it is in this large-Reynolds-number limit that we 
consider solutions of (14). The outer solution itself then includes a boundary-layer 
structure. We introduce the classical boundary-layer variables g = 4 y ,  q) = Ri S l ,  dS) 
and we note that in this thin outer boundary layer the drift velocity (15) takes the 
particularly simple form = (2A, 0), and (14) becomes 

Now, since in the boundary-layer limit 51") = -au?)/ag, we may integrate (16) once 
to give the equation which must be solved as 

together with ( a q / a x )  + ( a q p g )  = 0. (18) 

.I"' (2+2K) = up' (x). 

u(") = us = g(1-A2)sin2x+3A, vf) = 0; 

The boundary conditions for (17), (18) require periodicity so that 

In addition we have conditions at  g = 0, to match with the Stokes-layer solution, 
namely 

and to complete the specification of the problem in this outer boundary layer we 
require a condition as g+ 00. Since the condition (19a) gives a circulation about the 
cylinder at g = 0, when A = 0, we cannot ignore the possibility that the solution in 
the outer boundary layer matches with a potential flow solution. Such a solution will 
be that for a potential line vortex, which requires 

(19a, b)  

up) + y/2n as g+ 00. (20) 

This corresponds to vo = - y/2m outside the boundary layer, where the circulation 
y is, as yet, unknown. The fact that up) is constant at  the edge of the boundary layer 
justifies the omission of any pressure-gradient term in (17). We discuss the solution 
of (17)-(20) in the next section. 
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4. Results and discussion 
The two limiting cases A = 0 , l  have been discussed previously. For the case 

A = 1, Riley (1971) has pointed out that the solution is, trivially, up) = const, i$) = 0, 
so that y = 6x. The case A = 0 is more complex. Stuart (1966) conjectured that 
the boundary layers in the outer flow would collide a t  x = in, ;IT with jet-like 
flows erupting from the cylinder surface. A numerical solution of (17)-(20) with 
A = y = 0 has been obtained by Davidson & Riley (1972) which, together with 
experiment, upholds the conjecture. Calculations by Haddon & Riley (1979), based 
upon the steady Navier-Stokes equations, add further confirmation. In  the present 
case, then, we may conjecture that for A, < A < 1 the structure of the outer 
boundary layer is such that the fluid within it performs a circulatory motion around 
the cylinder. But there is a critical value, A,, such that for 0 < A < A, fluid erupts 
from the boundary layer, in a jet-like manner, into the main body of fluid. For those 
values of A, the model of the flow we have proposed in $3, embodied in (17)-(20) will 
not be valid. 

To investigate the situation further we write, in (17)-(20), up) = - 2A + @@ so that 
we now have 

up’ = 3 , ( 1 - ~ 2 ) s i n 2 x + 5 ~  = as, say, 
Wa, b )  

with .I”) = o on i ~ =  o;\  
= y/2n+2A = a,, say, as i ~ +  co. I 

The problem posed by (21), (22) may now be recognized as the ‘Batchelor sleeve 
problem’, and it may be readily shown (Batchelor 1956), that the relationship 
between as and am is simply 1; a: dx = 1; a& dx, (23) 

(24) which gives y/2x = - 2A + {!( 1 -A2)’ + 25A2}1. 

The result (24) holds only when @f) > 0 which, in the absence of any pres- 
sure gradient term in (21a) implies tis > 0, and this, in turn, from (22a) implies 
A 2 A, x 0.28. For values A, < A < A,, the relationship between A and y must be 
found by numerical means. To enable that, we adopt the technique described by 
Riley (1981) for flows of the Batchelor type. Equations (21) are discretized in the x- 
and g-directions using central differences and, starting with a profile that satisfies 
(22) but is otherwise arbitrary, the solution is advanced in the x-direction. After 
several sweeps over the interval 0 < x < 2x periodicity of the solution is achieved. All 
this is for given values of A and y .  Periodicity does not determine y ,  for a fixed value 
of A ; a more careful consideration of the matching between the boundary layer and 
the outer potential flow must be made. This is done by ensuring that the vorticity 
is zero a t  the outer edge of the boundary layer. If the computational domain is 
defined by 0 < g < gm, then for a given value of A we calculate S, = C I a@)/aylY=!,, 
where the summation takes place over all the grid points for 0 < x: < 2x. As y varies 
we find that S,, exhibits a well-defined minimum which we accept as the value of y 
appropriate to the particular value of A. With i ~ ,  = 10, and 6x = &n, 6g = 0.1, we 
find that min S, = O( lop4), which enables us to reproduce numerically the results 
given by (24), for A 2 A,, to within ;YO. We have used this technique for values of 
A < A, successfully down to A = 0.237, when the main features of the flow we wish to 
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FIGURE 3. The circulation y of the outer potential flow as a function of A. 
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FIQURE 4. The normal component of velocity at the edge of the outer boundary layer, t~’&-~, 
for various values of A. 

establish have clearly emerged. The failure of the method below this value may be 
attributed to an instability in our numerical scheme, which involves advancing the 
solution into regions where close to the boundary there is reversed flow, exacerbated 
by the incipient breakdown of the flow structure. The results we have obtained are 
shown in figures 3-5. 

I n  figure 3 we present the variation of the circulation, associated with the outer 
potential flow, with A. This is unexceptional, showing an expected monotonic 
decrease of y with A. In figure 4 we show the distribution of @) Il-oo for 0 < x < R and 
various values of A. As A decreases below about 0.5 we see a dramatic increase in the 
maximum value of the normal velocity a t  the edge of the boundary layer. This is 
further illustrated in figure 5 which shows max@@lg,, as a function of A. The 
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h 

FIGURE 5. max$)Jg_m as a function of A. The critical value A = A, 5 0.213 is shown 
as a broken line. 

development of a singularity in this quantity is evident. Our results are consistent 
with $)IB-m - 0.684 (A-0.213)-$ as this singular point is reached, although we have 
not been able to establish this result analytically. We interpret the breakdown a t  
h = A, x 0.213 as an eruption of fluid from the boundary layer which dramatically 
changes the flow structure proposed in $3. I n  the limiting case A = 0, we have no net 
circulation, so y = 0, and jets of fluid emerge symmetrically along z = in, in. For 
0 < h < A,, although we again have a jet-like eruption of fluid from the boundary 
layers, it is not possible from the high-Reynolds number theory of $ 3  to infer the flow 
structure. Such an eruption will invalidate the arguments leading up to  (17)-(20) and 
only a calculation of the steady streaming based upon (14) can resolve the flow 
behaviour. 
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